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Abstract—In recent years, the use of permutation-diffusion
architecture for digital image encryption has become increas-
ingly popular. The permutation procedure scrambles the pixel
locations, while the diffusion phase modifies the pixel values and
gives rise to the avalanche effect. Various diffusion techniques
have been developed, and their strength strongly impacts the
security of the overall cryptosystem. In this paper, we re-evaluate
the security of a family of image diffusion mechanisms that
are based on mixing modulo addition with bitwise exclusive
OR operations. The recovery of the encryption element of these
diffusion mechanisms is comprehensively demonstrated, and the
accuracy bounds under various conditions are proved mathe-
matically. Compared to the state-of-the-art methods, our work
improves the recovery accuracy of the encryption element while
the required prior knowledge is decreased. The proposed analysis
of the diffusion mechanisms is further used to cryptanalyze the
whole cryptosystem theoretically and experimentally.

Index Terms—Cryptanalysis, image encryption, modulo addi-
tion, bitwise exclusive OR

I. INTRODUCTION

In recent years, secure transmission and storage of multi-
media contents in public communication infrastructures have
attracted intense attention [1], [2]. Traditional ciphers such as
the data encryption standard (DES) and advanced encryption
standard (AES) are applicable to encrypt the multimedia data
in binary fashion. However, this straightforward encryption
that does not consider the nature of multimedia data is ineffi-
cient, and in some cases is also insecure [3], [4]. Due to this
concern, some researchers have advocated investigation of ad
hoc encryption schemes by leveraging the intrinsic properties
of multimedia data such as high pixel correlation and large
volume [5]–[7].

The permutation-diffusion network is currently the most
popular architecture in the literature on the design of image
encryption schemes, [8]–[14]. It was first proposed by Fridrich
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[15] based on the traditional substitution-permutation network,
and then was formalized by Chen et al. [16], [17]. In this
structure, the permutation procedure focuses on scrambling
pixel locations while the diffusion phase modifies the pixel
values and spreads the plaintext’s information to the whole
ciphertext. The permutation vector and diffusion masks are
the secret elements required in this architecture, while chaotic
systems and other nonlinear phenomenons are popular choice
for their generation. Even though researchers have developed
various permutation approaches, permutation itself is not very
strong with respect to security and generalized cryptanalysis
of the permutation techniques has been investigated in [18]–
[23]. In this case, the security of the nonlinear diffusion phase
either from the design or the analysis point of view, becomes
critical.

Fridrich proposed to implement the image diffusion as

c(i) = p(i)+̇F [c(i− 1), k(i)],

where p(i), c(i) and k(i) are the i-th plain pixel, cipher
pixel and diffusion mask, respectively. Here, the operator +̇
denotes the modulo addition while function F (·) is suggested
to be nonlinear and computation-efficient. The introduction
of c(i − 1) aims to spread a single pixel’s information to
the whole ciphertext, hence achieving the so-called avalanche
effect. Following this work, Chen et al. [16], [17] developed a
diffusion mechanism by mixing modulo addition with bitwise
exclusive OR (XOR), according to

c(i) = c(i− 1)⊕ [p(i)+̇k(i)]⊕ k(i), (1)

where ⊕ denotes bitwise XOR. Benefiting from the high
implementation efficiency and nonlinear characteristic over
GF(2), Eq. (1) has been frequently adopted as the diffusion
part of an image encryption scheme [24]–[30]. Some of the
cryptosystems directly employed Eq. (1) for diffusion [25],
while some others slightly modified the equation. For example,
the roles of p(i) and c(i− 1) was swapped in the encryption
scheme of [24] while three groups of diffusion masks were
used in [27].

Together with its wide use for encryption, security eval-
uation of Eq. (1) has also attracted research attention of
the community. If the diffusion mask k(i) can be derived
from some collected information, i.e., some known or chosen
plain pixels and the corresponding ciphertexts, the security
strength of this kind of permutation-diffusion cryptosystem is
consequently decreased. Determination of k(i) of Eq. (1) is the
core problem of the related cryptanalysis. Previous works have
been reported in [31]–[35]. They used differential analysis and

Authorized licensed use limited to: Universidade de Macau. Downloaded on January 29,2021 at 02:48:16 UTC from IEEE Xplore.  Restrictions apply. 



1051-8215 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCSVT.2021.3054508, IEEE
Transactions on Circuits and Systems for Video Technology

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. **, NO. **, 2021 2

reduced the problem to the derivation of k of the following
differential equation of modulo addition (DEA),

y = (α+̇k)⊕ (β+̇k). (2)

With some known or chosen (y, α, β) tuples, k can be de-
termined with certain probability. For attacking the image
cryptosystems in [29], [30], Li et al. [31] first introduced DEA
and reported that three chosen (α, β) queries and correspond-
ing y are sufficient to derive k. On the other hand, Zhang
et al. [33], [34] attempted to determine k from some known
(y, α, β) tuples and extended the method to crack some image
cryptosystems under a known-plaintext attack.

In this paper, we attempt to determine k from

y = (p+̇k)⊕ k, (3)

rather than by using the differential analysis in the previous
works [31]–[35]. Then, the cryptographic strength of the
Eq. (1) and similar diffusion mechanisms is directly indi-
cated, and the generalized achievements can be extended in
a straightforward manner to crack the permutation-diffusion
kind cryptosystems. Determination of k of y = (p+̇k) ⊕ k
has been discussed in [36] where the authors proposed to
narrow the possible values of k using some known (y, p) pairs.
This is essentially an exhaustive search method. In this paper,
we present a theoretical study of this problem. Generalized
methods for determining k of y = (p+̇k) ⊕ k are examined,
and the proposed method can be straightforwardly extended
for cryptanalysis applications. On the other hand, the related
works have always focused on attacking a certain specified
image cryptosystem [31], [32]. In addition, we summarize the
theoretical bounds of determining k under various attack con-
ditions, while the peer works generally solved this problem in a
single scenario such as the known-plaintext attack assumption
given in [34].

The contributions of this work are summarized as follows:
1) We comprehensively analyze the determination of k sat-

isfying y = (p+̇k)⊕k that is popularly used as a generic
cryptographic component for image encryption.

2) The technical algorithm for deriving k is described in de-
tail, and the accuracy bounds under various assumptions
are mathematically proven.

3) The theoretical achievements are experimentally applied
to cryptanalyze several image encryption schemes.

4) The source codes are open accessible for validation and
extension 1.

The remainder of this paper is organized as follows. Section
II introduces the notations and related work. The theoretical
achievements of this work are presented in Section III which
also include the comparisons with the related methods. Cryp-
tographic applications for attacking some image cryptosystems
are given in Section IV, and conclusions are drawn in the last
section.

II. RELATED WORKS

A. Notations and assumptions

Some notations adopted in this paper are listed as follows.

1The source codes are open accessible via https://github.com/lurenjia212.

• In this paper, the bold upper case is used to denote
an assembly while a capital character always denotes
a constant. For example, the image size is assumed as
H × W , and the pixels of image M are denoted as
{m(0, 0),m(0, 1), . . . ,m(i, j), . . . ,m(H − 1,W − 1)},
or {m(0),m(1), . . . ,m(i), . . . ,m(L− 1)}, L = H ×W
in vector formation.

• The pixels are assumed to have N -bits resolution, so that
the pixel values range within [0, 2N − 1].

• For a n-bits resolution number x, its bits are denoted as
xn−1, · · · , x1, x0, from the highest bit to the lowest one.
The value of x is x =

∑n−1
i=0 xi × 2i.

• The symbol ∧ denotes bitwise AND operation, and we
also use ab to represent a ∧ b for simplicity [32], [34]

In a secret communication system, the ciphertext is assumed
to be transmitted over public channels. Technically, everybody
can eavesdrop and obtain the ciphertext, whereas its plaintext
should be unaccessible without the key. In this scenario,
cryptanalysis refers to the recovery of the plaintext without
the key. The common four types of attack models are [37]

1) Ciphertext-only attack: the adversary only has a number
of ciphertexts.

2) Known-plaintext attack: the adversary has a collection of
plaintexts and their ciphertexts.

3) Chosen-plaintext attack: the adversary can construct any
plaintexts on demand and obtain the corresponding ci-
phertexts.

4) Chosen-ciphertext attack: the adversary can construct any
ciphertexts that he wants and obtain the corresponding
plaintexts.

By exploiting the underlying clues inside the collected
information, an attack is said to be successful if the receiving
ciphertext can be recovered without the secret key.

B. Image encryption schemes under study

As mentioned above, mixing modulo addition with bitwise
XOR has been frequently adopted for the diffusion part of
image encryption. To some extent, most of them are variants
of Chen’s diffusion mechanism in Eq. (1). Three typical
applications can be found in [24], [26], [27]. We briefly review
these cryptosystems in this section 2.

1) Xie’s cryptosystem in [26]. An image encryption scheme
was developed in [26] based on the permutation-diffusion
structure. Using the results on the security analysis of per-
mutation ciphers [18], [20], [21], the 3D permutation in
[26] is generalized as a vector for ease of the description.

a) Initialization. With the help of the optics chaos
and 3D cat map, a permutation vector V =
{v(1), v(2), · · · , v(L)} is produced. In addition, a vec-
tor of diffusion mask, i.e., K = {k(0), k(2), · · · , k(L−
1)}, is generated from the Logistic map.

b) Permutation. Scramble the plain image M according to

p(i) = m(v(i)). (4)

2For simplicity, descriptions of the studied cryptosystems may be different
from those in the original publications. However, the encryption kernels are
identical.

Authorized licensed use limited to: Universidade de Macau. Downloaded on January 29,2021 at 02:48:16 UTC from IEEE Xplore.  Restrictions apply. 

https://github.com/lurenjia212


1051-8215 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCSVT.2021.3054508, IEEE
Transactions on Circuits and Systems for Video Technology

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. **, NO. **, 2021 3

The permutation ciphertext P is thus produced.
c) Diffusion. The diffusion is implemented according to

Eq. (1), that is

c(i) = c(i− 1)⊕ [p(i)+̇k(i)]⊕ k(i).

A similar secret communication system uses optics chaos
and permutation-diffusion encryption can be found in
[25], and the same diffusion equation is used.

2) Parvin’s cryptosystem in [24]. An encryption scheme was
developed in [24] for encrypting a 256 gray-scale image.

a) Initialization. With the key Seed and two chaotic
systems, three series of random numbers are generated.
These are denoted as U, V and K, respectively. The
assembly K has H×W pseudorandom integers within
[0, 255], while U, V contains H and W non-repetitive
pseudorandom integers in the interval [0, H − 1] and
[0,W − 1], respectively.

b) Permutation. Parvin’s cryptosystem uses a two-stage
permutation 3. First, each row of the plaintext M is
shuffled with the vector U, that is

p′(u(i), j) = m(i, j). (5)

The resultant image P′ is then scrambled column by
column by the vector V, that is

p(i, v(j)) = p′(i, j). (6)

The product P is the permutation ciphertext.
c) Diffusion. Compared to Eq. (1), Parvin’s diffusion

method swaps the roles of c(i − 1) and p(i), yet
the adopted arithmetic operations are identical. The
permutation product is first stretched into a vector
that is still denoted as P because this will not cause
ambiguity. The diffusion is implemented according to

c(i) = p(i)⊕ [c(i− 1)+̇k(i)]⊕ k(i). (7)

The resultant vector is rearranged into a H×W matrix,
and then the ciphertext C is obtained.

3) Sam’s cryptosystem in [27]. This scheme is developed
for encrypting color images. The secret key includes
six odd integers ({ru}6u=1), and three control parameters
(k1, k2, k3) and initial states (x0, y0, z0) of the employed
3-D chaotic map. The plain image is denoted as M, while
its RGB channels are represented as R, G, B, respectively.

a) Initialization. With {ru}6u=1, three permutation matri-
ces are first generated according to Eq. (8).

ri(i) = mod(i× r1 × 31, H) (i ∈ [0 ∼ H − 1])
rj(j) = mod(j × r2 × 31,W ) (j ∈ [0 ∼W − 1])
gi(i) = mod(i× r3 × 31, H) (i ∈ [0 ∼ H − 1])
gj(j) = mod(j × r4 × 31,W ) (j ∈ [0 ∼W − 1])
bi(i) = mod(i× r5 × 31, H) (i ∈ [0 ∼ H − 1])
bj(j) = mod(j × r6 × 31,W ) (j ∈ [0 ∼W − 1])

.

(8)
Then, three series of diffusion masks are produced with
(k1, k2, k3, x0, y0, z0) and the adopted 3-D chaotic

3Because Parvin’s permutation technique can be attacked in a simpler
manner than the universal cryptanalysis in [18], [20], [21], and we do not
generalize Parvin’s permutation as Eq. (4).

map, denoted as X, Y, Z. All of these have L = H×W
elements range within [0, 255].

b) Permutation. The RGB channels are scrambled inde-
pendently, with the permutation matrices produced by
Eq. (8). The scrambling process is given by pr(i, j) = r(ri(i), rj(j))

pg(i, j) = g(gi(i), gj(j))
pb(i, j) = b(bi(i), bj(j))

, (9)

where PR, PG and PB denote the permutation cipher-
texts of R, G, B, respectively.

c) Diffusion. Since the diffusion is operated on each
channel independently, we only focus on the R channel
in the following. The permutation ciphertext PR is first
reshaped into a vector. A nonlinear diffusion procedure
is then implemented according to

cr†(i) = [pr(i) ≫ 4+̇x(i)]⊕ y(i). (10)

The product CR† is reshaped to a matrix and then
rescanned in zigzag pattern to get CR‡. A diffusion
procedure is further performed according to

cr(i) = cr‡(i)⊕ cr(i− 1)⊕ z(i), (11)

where cr(−1) = 0. Without loss of the generality, we
use zig(i) to denote the correspondence between cr†(i)
and cr‡(i), that is

cr‡(i) = cr†(zig(i)). (12)

Combining Eqs. (10)-(12) together, we can integrate
the whole diffusion as

cr(i) = [pr(zig(i)) ≫ 4+̇x(zig(i))]
⊕y(zig(i))⊕ cr(i− 1)⊕ z(i), (13)

where ≫ 4 refers to the circular shift (towards
right) operation by 4 bits. The G and B channels are
encrypted in a same manner with identical diffusion
masks. That is

cg(i) = [pg(zig(i)) ≫ 4+̇x(zig(i))]
⊕y(zig(i))⊕ cg(i− 1)⊕ z(i). (14)

cb(i) = [pb(zig(i)) ≫ 4+̇x(zig(i))]
⊕y(zig(i))⊕ cb(i− 1)⊕ z(i). (15)

Combining the encrypted RGB channels (CR, CG and
CB) into a color image, the final ciphertext C is
produced.

C. Existing cryptanalysis on the primitive

Finding the diffusion mask K is the core problem of the
cryptanalysis of the studied diffusion mechanisms as well
as the whole cryptosystems. Previous works have striven for
solving this problem [31]–[35]. These works are based on a
differential analysis. Taking Eq. (1) as an example, assum-
ing that there are two pairs of plaintexts and corresponding
ciphertexts, i.e., M1, M2, C1, C2, we can obtain{

c1(i) = c1(i− 1)⊕ [p1(i)+̇k(i)]⊕ k(i)
c2(i) = c2(i− 1)⊕ [p2(i)+̇k(i)]⊕ k(i) . (16)
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The differential of the ciphertexts is further calculated as

c1(i)⊕ c2(i)⊕ c1(i− 1)⊕ c2(i− 1)
= [p1(i) + k(i)]⊕ [p2(i) + k(i)]

. (17)

It is clear that the differential analysis of the Parvin’s scheme
by Eq. (7) can also be finalized into a similar form. For Sam’s
encryption scheme [27], we can directly obtain the differential
result by XORing the ciphertexts of different channels. From
Eqs. (13) and (14), we can obtain

cr(i)⊕ cr(i− 1)⊕ cg(i)⊕ cg(i− 1) =
[pr(zig(i)) ≫ 4+̇x(zig(i))]⊕ [pg(zig(i)) ≫ 4+̇x(zig(i))]

(18)
The DEA is the generalized expression of Eqs. (17) and

(18), that is
y = (α+̇k)⊕ (β+̇k).

For any value of i, finding the diffusion mask k(i) finalizes
the determination k of DEA. Previous works [31]–[35] have
sought to determine k from some known or chosen (y, α, β)
tuples. These can be classified into the following categories.

1) Determine k from some (y, α, β) tuples while (α, β) can
be freely selected. This scenario always corresponds to
chosen-plaintext attack in the cryptanalys-related image
encryption schemes, because α and β refer to plain pixels
in Eqs. (17) and (18). By constructing some special (α, β)
and obtaining corresponding y, k had been proven to be
recoverable. Li et al. first proposed in [31] that three
special (α, β) pairs are required to derive k, and then
demonstrated that two chosen queries are sufficient [32].
For cryptoanalyzing a 256 gray-scale image encryption
scheme, Liu et al. [35] specified that the two chosen
queries are (α̂, β̂) = (0, 170) and (α̃, β̃) = (170, 85). In
addition to Li’s achievements, it was investigated in [34]
that another two chosen queries in terms of (α, β) are
also valid for determining k of DEA.

2) Determine k when (y, α, β) tuples are known but un-
selectable. This assumption appears to be similar to a
known-plaintext attack. Unlike the precise recovery by
some chosen (α, β) queries, determining k with some
known (y, α, β) tuples is relatively difficult. Generally,
researchers attempted to derive a probability of deter-
mining ki in this scenario [32]–[34]. In [32], Li first
sought to obtain k from known (y, α, β) tuples; however,
the presented achievements are obtained by utilizing
some special properties of the studies image encryption
schemes [29], [30] and cannot be directly extended to
other similar cryptosystems. In [36], it is proposed to
continuously narrow the possible candidates of k and
finally determine k using the known plaintexts and ci-
phertexts. Subsequently, Zhang et al. [33], [34] investi-
gated a general method to determine k of DEA from g
known (y, α, β) tuples. The recovery probability has been
mathematically deduced and experimentally validated.

3) Determine k from (y, α, β) tuples while y can be freely
chosen. This assumption generally corresponds to a
chosen-ciphertext attack in cryptanalysis. In the previous
works [31]–[35], there was no specific discussion about
this issue, i.e., determining k when y can be freely chosen

and the corresponding (α, β) are available. Based on the
presented properties or propositions, a conclusion can
also be drawn. Typical achievements can be found in [33],
[34] who reported that the k0 ∼ ki can be determined if
y0 ∼ yi are all ones. In other words, if consecutive ones
were observed in y, then equal amounts of consecutive
bits can be derived definitely. Accordingly, k can be fully
determined with one (y, α, β) tuple if the bits of y are
all ones.

It is noted that the required (y, α, β) counts for breaking
DEA are not the numbers of the required chosen-plaintexts,
known-plaintexts or chosen-ciphertexts when cryptanalyzing a
real image cryptosystem. The (α, β) of the DEA refers to two
plaintexts of an image cryptosystem, while y is the differential
of the ciphertexts of α and β. Therefore, g tuples of (y, α, β)
always require more than g plaintexts. For example, the two
chosen queries in [32], [34] refer to three chosen-plaintexts and
corresponding ciphertexts of the cryptosystem in [30], while
the g known (y, α, β) tuples required in [33], [34] correspond
to at least g + 1 couples of known plaintexts and ciphertexts.

III. MAIN RESULTS

A. Problem formulation

Unlike the previous works that seek to derive k by DEA,
i.e., y = (α+̇k) ⊕ (β+̇k), this work attempts to solve k
directly from the diffusion equation itself. Without loss of
the generality, Eq. (1) is first taken as an example. We can
obviously obtain

c(n)⊕ c(n− 1) = [p(n)+̇k(n)]⊕ k(n).

A generalized form is thus derived as Eq. (3), that is

y = (p+̇k)⊕ k.

The counterparts [32], [34] strive to solve this problem
through a differential fashion as y = (α+̇k)⊕ (β+̇k). On the
other hand, this paper seeks to determine k directly from its
original fashion, i.e., y = (p+̇k) ⊕ k. Suppose y, p, k ∈ ZN

2 ,
given a collection of (y, p) pairs, the following subsections
focus on determining k satisfying y = (p+̇k) ⊕ k in various
assumptions.

B. Some properties of y = (p+̇k)⊕ k
We start with the bitwise representation of y = (p+̇k)⊕ k.

Assume that t = p+̇k, its iteration form is [34] ti = pi ⊕ ki ⊕ γi
γ0 = 0;
γi = pi−1ki−1 ⊕ ki−1γi−1 ⊕ γi−1pi−1, i ≥ 1

, (19)

where γi is the carry bit of the i-th bit plane of t = p+̇k. The
i-th bit of y is further obtained as

yi = ti ⊕ ki
= pi ⊕ ki ⊕ γi ⊕ ki
= pi ⊕ γi

. (20)
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Combining Eqs. (19) and (20), we can obtain the iteration
pattern of y = (p+̇k)⊕ k as Eq. (21). yi = pi ⊕ γi

γ0 = 0;
γi = pi−1ki−1 ⊕ ki−1γi−1 ⊕ γi−1pi−1, i ≥ 1

(21)

Proposition 1. The highest bit of k, i.e., kN−1, has no effect
on the result of y = (p+̇k)⊕ k. That means that if k satisfies
y = (p+̇k)⊕ k, then k ⊕ 2N−1 is an equivalent solution.

Proof. As revealed from Eq. (21), yN−1 = pN−1 ⊕ γN−1
while γN−1 is produced by pN−2, kN−2 and γN−2. The result
of yN−1 is unrelated to kN−1. Proof over.

This proposition indicates that the adversary only needs to
recover k0 ∼ kN−2. The highest bit kN−1 is not required in
the cryptanalysis. Even though described in different fashions
and for different motivations, this property had been proved
in peer works, such as Proposition 1 of [35].

Proposition 2. The bit yi = 1 is the sole necessary condition
for recovering ki (i ∈ [0, N − 2]).

Proof. When i ∈ [0, N−2], Eq. (21) can be further calculated
as

yi+1 = pi+1 ⊕ γi+1

= pi+1 ⊕ piki ⊕ kiγi ⊕ γipi
= pi+1 ⊕ ki(pi ⊕ γi)⊕ γipi
= pi+1 ⊕ kiyi ⊕ γipi

. (22)

As indicated, the information of ki is only preserved in the
form of kiyi. When yi = 1, Eq. (22) will forward the
information of ki to yi+1, otherwise, the information of ki
will be lost. Thus, yi = 1 is necessary for recovering ki.

Furthermore, when yi = 1, ki can be recovered by

ki = yi+1 ⊕ pi+1 ⊕ γipi.

Referring to Eq. (21), yi = γi ⊕ pi = 1 indicates γipi ≡ 0, ki
is consequently finalized as

ki = yi+1 ⊕ pi+1. (23)

Because yi+1 and pi+1 are known under the assumption that
some (y, p) pairs have been collected, the value of ki can be
determined once yi = 1.

To conclude, yi = 1 is the sole necessary condition for
recovering ki. Hence the proof is completed.

It should be emphasized that Proposition 2 is a significant
advance similar to that in [33], where yi = 1 is described as a
necessary but not the sole necessary condition for recovering
ki. Proposition 2 also indicates that the highest bit of k,
i.e., kN−1 cannot be recovered, because yN of Eq. (23) was
discarded by the modulo addition. Fortunately, kN−1 has been
revealed to be unnecessary by Proposition 1.

Proposition 3. The recovery of ki is independent of the
recovery of kj(j 6= i).

Proof. This proposition can be regarded as a derivative of
Proposition 2. Clearly, we can conclude from Eq. (22) that
whether ki is recoverable depends only on the value of yi. In

addition, it is straightforward from Eq. (23) that the value
of ki is completely determined by the values of yi+1 and
pi+1 that are known in the assumption. Whether kj(j 6= i) is
being recovered cannot change the recoverability as well as the
derived value of ki. Thus, the recoveries of ki are independent
of each other. Proof over.

Proposition 3 has remarkable advantages over the cryptanal-
ysis in [34], where recovering ki relies on the value of ki−1.
This proposition also promotes the recovery accuracy of ki
when some (y, p) pairs are known but unselectable. Numerical
comparisons will be given in Section III-D.

C. Determine k under various assumptions
Suppose that g pairs of (y, p) satisfying y = (p+̇k) ⊕

k have been collected, and they are denoted as S =
{[y(1), p(1)], [y(2), p(2)], · · · , [y(g), p(g)]} 4. Based on the
aforementioned propositions, Algorithm 1 is developed to
determine k from S.

Algorithm 1 The retrieval of k.

Input: A set S including g pairs of (y, p)
Output: k satisfying y = (p+̇k)⊕ k

1: Set k to a random number in [0, 2N − 1]
2: for each i ∈ [0, N − 2] do
3: for each j ∈ [1, g] do
4: if y(j)i == 1 then
5: Update ki as
6: ki = y(j)i+1 ⊕ p(j)i+1;
7: break;
8: end if
9: end for

10: end for
11: return k;

Then, we discuss the accuracy of k under three conditions,
i.e., when y is selectable, when p is selectable and when both
y and p are unselectable. Mathematical proofs are given.

First, let us discuss the recovery of k when y is selectable.
In specific, this scenario assumes that y can be freely chosen
while the corresponding p is also known. We can conclude
from Proposition 2 that when y = 2N − 1 (all the bits of y
are 1) or y = 2N−1 − 1 (all the bits of y are 1, except the
highest bit), it is able to recover ki(i ∈ [0, N − 2]) from Eq.
(23) or Algorithm 1 exactly. The values derived from y =
2N − 1 and y = 2N−1 − 1 are equivalent. As discussed in
Proposition 2, it is unable to recover the highest bit kN−1.
However, the recovered value is an equivalent of the original
value, because Proposition 1 has proven that the highest bit
kN−1 is not necessary for the cryptanalysis.

Remark 1. Given a pair of (y, p) of Eq. (3), ki(i ∈ [0, N−2])
can be solely determined in the case that y = 2N − 1 or
y = 2N−1 − 1.

Second, we discuss the recovery of k when p is selectable.
In this scenario, p can be freely constructed on demand and

4Note that, p(i) does not denote an image’s pixel at coordinate i, it
represents the i-th element of the collected g known plaintexts in an attack.
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the corresponding y is known at the same time. Appendix A
proves that only two chosen queries in terms of p and their
corresponding y are sufficient to determine k of y = (p+̇k)⊕k
exactly. The chosen queries are (p̂ =

∑dN/2e−1
j=0 4j , p̃ =∑bN/2c−1

j=0 2 · 4j) or (p̂ =
∑dN/2e−1

j=0 4j , p̃ =
∑bN/2c−1

j=0 2 ·
4j + 1) 5. Taking N = 8 as an example, each pixel has
8-bit resolution and the gray scale is 28 − 1 = 255. The
aforementioned two chosen queries of p are (p̂ = 85, p̃ =
170) or (p̂ = 85, p̃ = 171). In binary representation,
p̂ = 85 = (01010101)2, p̃ = 170 = (10101010)2 or
p̃ = 171 = (10101011)2.

Remark 2. Given two pairs of (y, p) of Eq. (3), i.e., (ŷ, p̂)
and (ỹ, p̃), ki (i ∈ [0, N − 2]) can be solely determined in
the case that p̂ =

∑dN/2e−1
j=0 4j while p̃ =

∑bN/2c−1
j=0 2 · 4j or

p̃ =
∑bN/2c−1

j=0 2 · 4j + 1.

Finally, we try to recover k when y and p are known but
both unselectable. Suppose that g pairs of (y, p) that satisfy
y = (p+̇k)⊕k have been collected. With the help of Properties
2 and 3, ki(i ∈ [0, N − 2]) can be recovered independently
by Eqs. (22) and (23). Assuming that p and y are uniformly
distributed, the probability that yi = 1 of a known y is 1/2. For
g pairs of (y, p), the probability that there exists at least one y
satisfies yi = 1 is 1−(1/2)g . Benefiting from Properties 2 and
3, Algorithm 1 is capable of determining ki (i ∈ [0, N − 2])
with probability 1− (1/2)g .

Remark 3. Given g known pairs of (y, p) of Eq. (3), ki (i ∈
[0, N − 2]) can be independently determined with probability
1− (1/2)g .

D. Discussion and comparison
Our primary goal is to determine k of y = (p+̇k)⊕k which

is identical as the goals of the peer works [32], [34]. This paper
innovatively solves this problem in its original form rather than
using differential analysis [32], [34], and we found that each
bit of k can be determined independently. Furthermore, the
recovery accuracy of the proposed approach has advantages
over the counterpart methods, as listed in Tables I and II.

Table I. Required equivalent (y, p) pairs for preciously determining
k.

Zhang’s [34] Li’s [32] Proposed
y is selectable 2 2 1
p is selectable 3 3 1

First, when y is selectable, a single (y, p) pair is sufficient
to recover k in the case that y is 2N − 1 or 2N−1− 1. On the
other hand, even though a (y, α, β) tuple is also sufficient to
recover k of y = (α+̇k)⊕(β+̇k), it corresponds to two (y, p)
pairs that discussed here. The proposed approach decreases
the number of the required (y, p) pairs from two to one in the
scenario that y is selectable.

Second, as given in Remark 2, two (y, p) pairs can solely
determine k given that the values of p are selectable. Com-
paratively, two (y, α, β) tuples that are equivalent to three

5Other types of representation of these two numbers are also possible, as
adopted in [31], [32], [34]
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Fig. 1. Probability of determining ki of Eq. (3) with respect to g
known (y, p) pairs.

(y, p) pairs are required by peer works [32], [34] to recover k
precisely. The proposed method also has advantages to recover
k when p is selectable.

Table II. Probability of determining ki with g unselectable (y, p)
pairs.

Zhang’s [34] Li’s [32] Proposed
y and p are
in-selectable (1− ( 1

2
)g−1)i+1 1−(1− 1

2i+1 )
g−1 1− ( 1

2
)g

Third, we discuss the probability of deriving ki when g pairs
of (y, p) are known yet unselectable. As concluded in Remark
3, ki is recovered independently in this work. The probability
for recovering ki from g known (y, p) pairs is

Pr(ki) ≡ 1− (
1

2
)g. (24)

As indicated, each bit has identical probability to be recovered,
and the probability increases exponentially with g. Even if only
one (y, p) pair is known to the adversary, ki can be recovered
with the probability of 50%, and this value will be as large as
87.5% when 3 known pairs are available.

Our algorithm displays remarkable advances in comparison
with peer works [32], [34]. The derivation of ki relies on
the recovery of ki−1 in [34], so that Pr(ki) is equal to the
probability of recovering all of the bits k0 ∼ ki. In addition,
Zhang et al. recovered k from the DEA, g pairs of (y, p) in
this paper is equal to at most g − 1 known tuples (y, α, β)
in [34]. The probability of recovering ki(i ∈ [0, N − 2]) by
Zhang’s algorithm [34], from g known pairs of (y, p) is 6

Pr(ki) = (1− (
1

2
)g−1)i+1.

On the other hand, there was no specific discussion regarding
the derivation of ki from known (y, p) pairs in [32]. The
derivation of ki in [32] also relies on the successful recovery of
the previous bits, and can be presumed to have a probability
of observing i + 1 consecutive ones in a single y sample.
Suppose that y is uniformly distributed, the probability of

6Interested readers can refer to the original paper for more details, and the
probability is given in Section V-A on Page 7 of [34].
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are available.

observing i+1 consecutive ones in a single y is 1/2i+1. Here,
recovering ki by Li’s work [32] from g known-only (y, p) pairs
is presumed with probability

Pr(ki) = 1− (1− 1

2i+1
)g−1.

The calculated probabilities of the proposed algorithm and
its counterparts [32], [34] are plotted in Fig. 2 where N = 16
and g = 4 are taken as an example. Even though the
compared algorithms can obtain relatively similar probabilities
to recover k0, the probabilities of the counterparts [32], [34]
when recovering higher bits decrease exponentially. On the
other hand, ki is recovered independently in our work with a
fixed probability as described by Eq. (24). In addition, it is
widely-known that higher-plane bit carries more information.
As indicated from Fig. 2, our algorithm is more advantageous
for recovering the bits at higher bit planes, and consequently
superior for deriving the final values of k. It is also easy
to observe that our algorithm become more advantageous
relative to its with decreasing g. In practical applications, it
is reasonable to collect a small number rather than a large
number of plaintext-ciphertext pairs. Therefore, the proposed
algorithm is more practical in real applications.

In addition, the proposed algorithm is clearly advantageous
when solving problems that are described as y = (α+̇k) ⊕
(β+̇k). By fixing β as zero, deriving k of y = (α+̇k)⊕(β+̇k)
turns into the studied problem (Eq. (3)). The most important
achievement is that ki is found to be recoverable independently
in this work. Compared with the counterparts [32], [34], Algo-
rithm 1 significantly promotes the accuracy since determining
ki in [32], [34] relies on the values of previous bits of k.

This section indicates that the diffusion primitive y =
(p+̇k) ⊕ k is insecure and the encryption element k can be
retrieved under various conditions. In addition, the follow-
ing sections will further demonstrate that some permutation-
diffusion encryption schemes using y = (p+̇k) ⊕ k as
encryption kernel are also insecure. However, the permutation-
diffusion (substitution) network itself has been proven to be a
secure architecture, as employed in AES. It is the vulnerability
of y = (p+̇k) ⊕ k that makes the whole cryptosystem

insecure. In this direction, secure diffusion kernel is suggested
to cooperate with a permutation module to build a complete
cryptosystem. A diffusion equation originating from the Helix
cipher, i.e.,

(k1 u k2)⊕ (k1 u (k2 ⊕ p)) = y (25)

can be used as an alternative [34], [38]. Paul et al. [39]
has reported that the required queries of finding the unknown
(k1, k2) of Eq. (25) is 2N−2 that approximates the theoretical
value 2N . Referring to the approach adopted in AES, diffusion
with a lookup table is also suggested, yet the permutation-
diffusion network must be iterated many times to promote the
security.

IV. APPLICATIONS FOR CRYPTANALYSIS

In this section, cryptanalysis applications of the theoretical
achievements in Section III will be demonstrated. Without loss
of the generality, the test images are assumed to have a size
of 512× 512 and the gray scale is set as 256 (i.e., N = 8).

A. Cryptanalysis of Xie’s cryptosystem

Observing the diffusion formula of Xie’s cryptosystem [26],
we can obtain

c(i)⊕ c(i− 1) = [p(i)+̇k(i)]⊕ k(i),

where c(i) and c(i− 1) represent the ciphered pixels and p(i)
refers to a pixel of the permutation ciphertext. Because the
permutation procedure will change pixel locations, we cannot
easily obtain the p(i) on demand. Fortunately, the permutation
cannot change pixel values, so that a plain image with identical
pixels will remain the same after the permutation procedure.
Benefiting from Remark 2, a chosen-plaintext attack is derived
for cracking this cryptosystem [26].

First, two chosen-plaintexts and corresponding ciphertexts
are sufficient to solely determine the diffusion masks K.
Referring to Remark 2, the pixels of the first chosen-plaintext
are all 85 while those of the second chosen-plaintext are 170,
as shown in Figs. 3(a) and 3(b), respectively. The recovered
diffusion masks are shown in 3(c) where their highest bits are
set to zero, because the highest bits are not necessary referring
to Proposition 1. After recovering K, the whole cryptosystem is
relaxed as a permutation-only cipher for which the permutation
vectors can be recovered by the some generalized methods in
[18], [20], [21]. With the retrieved permutation vectors and
diffusion masks, any receiving ciphertext can be recovered, as
demonstrated in Figs. 3(d)-3(f).

B. Cryptanalysis of Parvin’s cryptosystem

As described in Section II-B, Parvin’s cryptosystem [24]
consists of a row/column circular permutation and a diffusion
procedure based on Eq. (7). A divide−and−conquer strategy
is employed to independently recover the permutation element
and diffusion mask under a chosen-plaintext attack.

The permutation vectors U and V are retrieved first.
Compared with the generalized methods proposed in [18],
[20], [21], by exploiting the security defects of the adopted
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(a) (b) (c)

(d) (e) (f)

Fig. 3. Attacking results of [26]: (a) chosen-plaintext with pixel
values of 85; (b) chosen-plaintext with pixel values of 170; (c)
recovered diffusion masks; (d) a plaintext; (e) ciphertext of (d); (f)
recovered image.

row/column circular permutation, U and V can be recovered
in a more efficient manner. Suppose that we have a chosen-
plaintext M = {m(i, j) ≡ 0}, and the corresponding cipher-
text is C. Then, we construct another plaintext M′ as{

m′(l, l) = 127
m′(i, j) = 0 i 6= l, j 6= l,

,

and denote its ciphertext as C′. Of course, m′(l, l) can be set to
other values. According to Eqs. (5) and (6), this different pixel
will be swapped to (u(l), v(l)) of the permutation ciphertext.
Furthermore, this different pixel will cause large scale different
pixels after the diffusion module. Based on Eq. (7), the
different pixels between C and C′ are sequentially distributed,
starting from (u(l), v(l)) to (H,W ). Therefore, (u(l), v(l)) is
retrieved. An illustrative example is shown in Fig. 4, assuming
l = 66 without loss of the generality. Figure 4(a) is the
differential image of M and M′, there is only one different
pixel at (66, 66). The ciphertexts are given in Figs. 4(b) and
4(c), and they are noise-like in appearance. However, their
differential image clearly shows the different pixel between C
and C′. From numerical comparison, the first non-zero pixel of
the differential image is found at (389, 338). Therefore, we can
conclude that u(66) = 389 and v(66) = 338. By traversing
all of the diagonal pixels of M, all of the elements of U and
V can be recovered.

After obtaining the permutation vectors, the cryptosystem
is relaxed as a diffusion-only system. The diffusion mask K is
the remainder encryption elements to be recovered. Observing
Parvin’s diffusion by Eq. (7), we can obtain

c(i)⊕ p(i) = [c(i− 1)+̇k(i)]⊕ k(i). (26)

Because c(i) and c(i − 1) are un-controllable in plaintext
attacks, recovering k(i) of Eq. (26) consequently corresponds
to determining k of y = (p+̇k) ⊕ k in the scenario where
y and p are both unselectable. We can refer to Algorithm

(a) (b)

(c) (d)

Fig. 4. Recovering the permutation vector of [24]: (a) the differential
image of the plaintexts M and M′; (b) the ciphertext C; (c) the
ciphertext C′; (d) differential image of C and C′.

1 and determine k(i) one by one with the probability given
in Remark 3. With the permutation vectors U, V, and the
diffusion mask K, every ciphertext can be recovered. The
results are demonstrated in Fig. 5, where Fig. 5(a) is the
512 × 512 plaintext and its ciphertext is shown in Fig. 5(b).
When K is derived from 2 and 4 plaintext-ciphertext pairs, the
corresponding deciphered images are shown in Figs. 5(c) and
5(d), respectively. The recovered image’s quality increases sig-
nificantly with the counts of the collected plaintext-ciphertext
pairs, and it matches the probability given in Remark 3.

In addition, Parvin’s encryption scheme was also cryptana-
lyzed in [34]. Figures 5(e) and 5(f) demonstrate the decrypted
images using Zhang’s algorithm to recover K from 2 and 4
plaintext-ciphertext pairs, respectively. We can visually ob-
serve that Fig. 5(e) is noisier than Fig. 5(c) even though equal
counts of plaintext-ciphertext pairs are employed to recover the
diffusion element K. Specifically, the total count of error bits
of Fig. 5(e), compared with the plaintext Fig. 5(a), is 358257,
whereas that of Fig. 5(c) is only 181070. Similarly, when
4 plaintext-ciphertext pairs are available for determining K,
the decrypted image obtained by the proposed algorithm (Fig.
5(d)) has only 48487 error bits while that decrypted by Zhang’s
algorithm has 110287 incorrect bits (Fig. 5(f)). The advantage
of the proposed algorithm has been well demonstrated.

C. Cryptanalysis of Sam’s cryptosystem

The cryptosystem in [27] is developed for encrypting color
images, and the diffusion masks of the RGB channels are
identical. In other words, we can directly obtain three chosen
(y, p) pairs from one color plaintext and its ciphertext.

Only one chosen plaintext and the corresponding ciphertext
is sufficient to derive the equivalent diffusion masks. Specif-
ically, we can derive the equivalent diffusion masks with a
chosen-plaintext for which the pixels in the R, G, B channels
are identical and are 0, 85, 170, respectively. Observing that
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(a) (b) (c)

(d) (e) (f)

Fig. 5. Attacking results of [24]: (a) plaintext with size 512 × 512;
(b) the ciphertext of (a); (c) recovered image with K derived from
2 plaintext-ciphertext pair by the proposed algorithm; (d) recovered
image with K derived from 4 plaintexts-ciphertexts pairs by the
proposed algorithm; (e) recovered image with K derived from 2
plaintexts-ciphertexts pairs by Zhang’s algorithm [34]; (f) recovered
image with K derived from 4 plaintexts-ciphertexts pairs by Zhang’s
algorithm [34].

0 = 0 ≫ 4, 85 = 85 ≫ 4, 170 = 170 ≫ 4 and both Sam’s
permutation and zigzag rescanning are useless for shuffling
an image with identical pixels, the cipher pixels in the RGB
channels are obtained according to Eqs. (9)-(15) as cr(i) = x(zig(i))⊕ y(zig(i))⊕ cr(i− 1)⊕ z(i)

cg(i) = [85 + x(zig(i))]⊕ y(zig(i))⊕ cg(i− 1)⊕ z(i)
cb(i) = [170 + x(zig(i))]⊕ y(zig(i))⊕ cr(i− 1)⊕ z(i)

.

(27)
Furthermore, we can obtain

cr(i)⊕ cr(i− 1)⊕ cg(i)⊕ cg(i− 1)
= [85+̇x(zig(i))]⊕ x(zig(i))

cr(i)⊕ cr(i− 1)⊕ cb(i)⊕ cb(i− 1)
= [170+̇x(zig(i))]⊕ x(zig(i))

. (28)

Benefiting from Remark 2, x(zig(i)) can be first determined.
Then, referring to Eq. (27), y(zig(i))⊕ z(i) is obtained via

y(zig(i))⊕ z(i) = cr(i)⊕ cr(i− 1)⊕ x(zig(i)).

We can straightforwardly use x(zig(i)) and y(zig(i))⊕z(i) as
the equivalent diffusion masks for decrypting the ciphertexts
of Sam’s cryptosystem, rather than deriving the specific values
of x(i), y(i) and z(i).

With the retrieved x(zig(i)) and y(zig(i)) ⊕ z(i), Sam’s
cryptosystem degrades into a permutation-only encryption
scheme. Due to the intrinsic loophole of Eq. (8), it was
revealed in [36] that only one more chosen-plaintext is feasible
to accurately derive the permutation vector. In summary, two
chosen plaintexts and their ciphertexts are sufficient to recover
the permutation vector and equivalent diffusion masks of
Sam’s cryptosystem.

Experimental results on cracking Sam’s cryptosystem [27]
are shown in Fig. 6. The chosen-plaintext for deriving the

(equivalent) diffusion masks is given in Fig. 6(a), while Figs.
6(b) and 6(c) show the retrieved matrices of x(zig(i)) and
y(zig(i)) ⊕ z(i), respectively. A color image peppers is em-
ployed for validation, and Fig. 6(e) shows its ciphertext while
Fig. 6(f) shows the attack result using the derived equivalent
encryption elements. Numerical comparison verifies that the
original image has been accurately recovered.

(a) (b) (c)

(d) (e) (f)

Fig. 6. Attacking results of [27]: (a) chosen-plaintext with size
512 × 512; (b) retrieved matrix of x(zig(i)); (c) retrieved matrix
of y(zig(i)) ⊕ z(i); (d) a plaintext peppers; (e) ciphertext of (d);
(f) recovered image obtained with the derived equivalent encryption
elements.

V. CONCLUSIONS

By studying the recovery of k satisfying y = (p+̇k)⊕k, this
paper re-evaluates the security of a family of image diffusion
mechanisms. The determination of k in various conditions
have been understood, and the accuracy bounds are mathe-
matically deduced. Compared to the counterpart methods, our
algorithm can determine k with higher probability and less
prior knowledge. The proposed method is further applied to
break three cryptosystems using variants of y = (p+̇k)⊕k for
image diffusion. Experimental results are given for validation.
The security strength of y = (p+̇k)⊕k indicated by this paper
is expected to benefit both the design and cryptanalysis of a
family of image encryption schemes.

APPENDIX A
DEDUCTION OF REMARK 2

Given some pairs of (y p) of Eq. (3), this appendix will
demonstrate the required patterns of p for solely determining
ki (i ∈ [0, N − 2]).

1) Recovering k0. Benefiting from Proposition 2, if there is
a (p̂, ŷ) pair of Eq. (3) that ensures ŷ0 = 1, then k0 can
be recovered from Eq. (23). Referring to Eq. (21), ŷ0 = 1
definitely holds in the case that p̂0 = 1.
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2) Recovering k1. Referring to Eqs. and (21) and (22), we
can obtain

ŷ1 = p̂1 ⊕ k0ŷ0 ⊕ γ̂0p̂0
= p̂1 ⊕ k0 ∧ 1⊕ 0 ∧ p̂0
= p̂1 ⊕ k0

. (29)

As mentioned above, k0 is guaranteed to be recoverable
when p̂0 = 1, yet its value may be 0 or 1. A fixed value
of p̂1 cannot ensure ŷ1 = 1 which is the sole necessary
condition for recovering k1. Therefore, another pair of
Eq. (3), denoted as (p̃, ỹ), is required. With the help of
Eqs. (21) and (22), we can obtain ỹ1 as

ỹ1 = p̃1 ⊕ k0ỹ0 ⊕ γ̃0p̃0
= p̃1 ⊕ k0ỹ0 ⊕ 0 ∧ p̃0
= p̃1 ⊕ k0ỹ0

. (30)

To recover k1, the values of ŷ1 and ỹ1 must include
at least a 1. By exhaustive search in term of ŷ1, ỹ1,
ỹ0 and k0, the values of ŷ1 and ỹ1 are listed in Table
III. Observing columns 5∼8 of Table III, ŷ1 and ỹ1
have at least one positive value when (p̂1, p̃1) = (0, 1),
independent of p̃0 and k0.

Table III. The values of ŷ1 and ỹ1 in various conditions.

Col p̂1 p̃1 p̃0 k0 ŷ1 ỹ1
1 0 0 0 0 0 0
2 0 0 0 1 1 0
3 0 0 1 0 0 0
4 0 0 1 1 1 1
5 0 1 0 0 0 1
6 0 1 0 1 1 1
7 0 1 1 0 0 1
8 0 1 1 1 1 0
9 1 0 0 0 1 0
10 1 0 0 1 0 0
11 1 0 1 0 1 0
12 1 0 1 1 0 1
13 1 1 0 0 1 1
14 1 1 0 1 0 1
15 1 1 1 0 1 1
16 1 1 1 1 0 0

To conclude, (p̂, ŷ) and (p̃, ỹ) are required to derive k0
and k1 of Eq. (3), while p̂0 = 1, p̂1 = 0 and p̃1 = 1 yet
p̃0 can be 0 or 1.

3) Recovering ki(i ∈ [2, N − 2]). A generalized deduction
is employed for deriving ki(i ∈ [2, N−2]), under the as-
sumption that ki−1 has been successfully recovered with
two chosen queries (

_
p,

_
y), (

^
p,

^
y) with _

p i−1 = 0 and
^
p i−1 = 1. In this circumstance, Appendix B demonstrates
that when _

p i = 1 and ^
p i = 0, the values of _

y i,
^
y i have

at least one 1. Therefore, ki can be determined according
to Proposition 2.
Clearly, recovering k2 corresponds to i = 2, p̂ =

_
p, p̃ =

^
p . In other words, p̂2 = 1 while p̃2 = 0 can guarantee
the recovery of k2. Similarly, deriving k3 corresponds to
i = 3, p̂ =

^
p, p̃ =

_
p . Therefore, p̂3 = 0 while p̃3 = 1

helps to determine k3. Such a deduction can be repeated

for the recovery of k4, k5, · · · , kN−2 analogously. To
summarize, we obtain the rule of p̂ and p̃ as Eq. (31).

p̂0 = 1
p̂i = 1⊕ p̂i−1 (i ≥ 1)
p̃0 = 1 or 0
p̃i = 1⊕ p̂i (i ≥ 1)

(31)

Numerically 7, p̂ =
∑dN/2e−1

j=0 4j while p̃ =
∑bN/2c−1

j=0 2·
4j or

∑bN/2c−1
j=0 2 · 4j + 1.

Summarizing the aforementioned three items, two pairs of
chosen queries in terms of p are sufficient to derive k of Eq.
(3). They are denoted as (ŷ, p̂) and (ỹ, p̃), requiring that p̂ =∑dN/2e−1

j=0 4j while p̃ =
∑bN/2c−1

j=0 2·4j or
∑bN/2c−1

j=0 2·4j+1.

APPENDIX B
GENERALIZED REQUIREMENTS FOR RECOVERING

ki (i ≥ 2)

Assuming that ki−1 of Eq. (3) has been successfully recov-
ered with two chosen queries (

_
p,

_
y), (^p,^y) with _

p i−1 = 0

and ^
p i−1 = 1, here we demonstrate the required patterns of

_
p i and ^

p i for recovering ki. By Proposition 2, it is equivalent
to ensure that _

y i and ^
y i have at least one 1.

According to Proposition 2 and Eq. (21), the aforementioned
assumption further indicates that when _

p i−1 = 0 and ^
p i−1 =

1, _
y i−1 =

_
p i−1⊕

_
γ i−1 and ^

y i−1 =
^
p i−1⊕

^
γ i−1 have at least

one 1. The possible values of _
y i−1 and ^

y i−1 when _
p i−1 = 0

and ^
p i−1 = 1 have been listed in Table IV. To ensure _

y i and
^
y i have at least one 1, the valid combinations of (_γ i−1,

^
γ i−1)

are (0, 0), (1, 0) and (1, 1).

Table IV. Values of _
y i−1 and ^

y i−1 in various conditions.

Col _
p i−1

^
p i−1

_
γ i−1

^
γ i−1

_
y i−1

^
y i−1

1 0 1 0 0 0 1
2 0 1 0 1 0 0
3 0 1 1 0 1 1
4 0 1 1 1 1 0

Referring to Eq. (21), the values of _
y i,

^
y i is determined

by _
p i,

^
p i

_
p i−1, ^

p i−1, _
γ i−1, ^

γ i−1, and ki−1. Because
(
_
p i−1,

^
p i−1) are definite as (0, 1), (

_
γ i−1,

^
γ i−1) have three

possible combinations as mentioned above and ki has two
possible values, together with four candidates of (

_
p i,

^
p i),

there are a total of 24 combinations for calculating _
y i and

^
y i. Aiming to obtain the suggested (

_
p i,

^
p i) candidate, we

categorize the (
_
y i,

^
y i) results in terms of the four (

_
p i,

^
p i)

candidates. Consequently, there are four suites of results and
each suite has six items, as listed in Tables V ∼ VIII.

Table V. Possible values of _
y i and ^

y i when _
p i = 0 and ^

p i = 0.

Col _
p i−1

^
p i−1

_
γ i−1

^
γ i−1 ki

_
y i−1

^
y i−1

1 0 1 0 0 0 0 0
2 0 1 1 0 0 0 0
3 0 1 1 1 0 0 1
4 0 1 0 0 1 0 1
5 0 1 1 0 1 1 1
6 0 1 1 1 1 1 1

7Clearly, there are other representations of these numbers [31], [32], [34].
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Table VI. Possible values of _
y i and ^

y i when _
p i = 0 and ^

p i = 1.

Col _
p i−1

^
p i−1

_
γ i−1

^
γ i−1 ki

_
y i−1

^
y i−1

1 0 1 0 0 0 0 1
2 0 1 1 0 0 0 1
3 0 1 1 1 0 0 0
4 0 1 0 0 1 0 0
5 0 1 1 0 1 1 0
6 0 1 1 1 1 1 0

Table VII. Possible values of _
y i and ^

y i when _
p i = 1 and ^

p i = 0.

Col _
p i−1

^
p i−1

_
γ i−1

^
γ i−1 ki

_
y i−1

^
y i−1

1 0 1 0 0 0 1 0
2 0 1 1 0 0 1 0
3 0 1 1 1 0 1 1
4 0 1 0 0 1 1 1
5 0 1 1 0 1 0 1
6 0 1 1 1 1 0 1

It is observed that only in the case that (_p i,
^
p i) = (1, 0),

the resultant values of _
y i and ^

y i include at least one 1. The
recovery of ki can be further ensured.
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